
1
June 29, 2021

Remotely Controlling TrustZone Applications? 
A Study on Securely and Resiliently 

Receiving Remote Commands

Shengye Wan, Kun Sun, Ning Zhang, Yue Li



OUTLINE
● Introduction

● System Overview

● System Evaluation

● Takeaways

2



INTRODUCTION

3



Background: Mobile Device Management

4

● Mobile device management (MDM)

○ Enable corporate administrators to remotely perform essential functions

■ Supportability, security, and corporate functionality



Security of MDM Agents

5

● MDM workflow

○ Administrator <-> Management Commands <-> MDM Agents (clients)

[1] CVE Details: https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/year-2020/Google-Android.html

● MDM agents are security-sensitive 

○ Rich OS cannot be trusted to hold MDM agents

■ 859 CVEs are reported in 2020 for Android [1]

○ Opportunities to enhance MDM agents’ security

■



Background: ARM TrustZone Technology

6

Entire normal world is untrusted

It is isolated from secure components

Secure world is trusted 



Motivation: Two Worlds Need to Share One NIC

7

● MDM agents require network service

○ Remote attestation, remote control, remote troubleshooting 

● Secure world (SW) does not have an exclusive NIC

○ Commercial devices only equip one set of network devices

■ Limited hardware spaces on mobile

○ NW and SW need to share the NIC

● Question: With a shared Network Interface Card (NIC), 

how to provide a reliable network for ARM TrustZone 

secure world?



Background: NIC Workflow

8

Network 

Driver

DMA-enabled

NIC

Network 

Packet

locate

via

registers

(on NIC)

Driver Interface

(on DRAM)

allocate

Packet Buffers

(on DRAM)

link

DMA



SYSTEM
OVERVIEW

9



How to Share One NIC Between Two Worlds?

10

● Option-1: sharing the single network driver in NW 

Driver Interface

(on NW DRAM)

Packet Buffers

(on NW DRAM)

NW

Network 

Driver

○ Pros: providing good normal 

world performance

○ Cons: not reliable for the 

secure world



Sharing One NIC: Option-2

11

○ Pros: reliable for SW

○ Cons: introducing large 

overhead 

■ NW software cannot 

access packet buffers 

directly

SW 

Network 

Driver

cannot 

access

Driver Interface

(on SW DRAM)

Packet Buffers

(on SW DRAM)

NW
Software

● Option-2: sharing the single network driver in SW



● Option-3: deploying two network drivers in each world

Sharing One NIC: Option-3

12

NW Driver Interface + Packet Buffers

SW Driver Interface + Packet Buffers

NIC

○ Pros: reliable and good 

performance

○ Cons: very difficult to schedule two 

drivers 

■ One NIC only connects to 

one driver’s interface

None of these 

options works!



Our Solution: TZNIC

13

● Deploying a complete NW-driver and a slim SW-driver

○ Key idea: executing two drivers simultaneously on the multi-core platform

○ Multiplexing the NW-driver's interface

NW Network Driver 

(core_0)

securely reuse NW 

interface and buffers

NIC

locate

via

Registers

(on NIC)

Driver Interface

+ Packet Buffers

(on NW DRAM)

SW Slim Network Driver 

(core_1)



TZNIC Challenges

14

1. Filling the semantic gap to use NW-driver's interface reliably

○ SW-driver should not put any trust in the normal world

○ SW-driver should not require any collaboration from the normal world

2. Resisting interference from the normal world

○ Securely sharing the interface and buffers with NW-driver



Resolving Challenge-1: Filling Semantic Gap

15

● Locating NW driver’s interface via the NIC registers

○ Registers indicate the ring buffer information

○ Registers are readable to the secure world

● Locating the packets via the NW driver’s interface

○ Interface and buffers are saved in the NW memory

■ Secure world has the privilege to read/write

○ NW driver uses fixed-format interface to communicate with NIC

● Does not request any collaboration of the normal world



Resolving Challenge-2: Resisting NW interference 

16

● Reading packets in parallel of NW-driver

○ SW-driver wakes itself periodically to receive the packets

○ One receiving buffer can be read by two drivers simultaneously

● Saving the secure-world packets to the secure memory

○ Each buffer should be independent and loss-tolerant (e.g., UDP)

○ Normal-world attacker cannot access



SYSTEM
EVALUATION

17



TZNIC Implementation 
● Implementing our prototype based on ARM-TF [2]

○ Marvell Yukon-II NIC & Marvell sky-2 driver (v 1.30)

● TZNIC’s slim driver’s size is 18.63% of the original driver

○ Full-fledged normal-world sky-2 driver: 5707 LOC

○ TZNIC slim secure-world driver: 1063 LOC

18
[2] ARM-software. ARM-Trusted-Firmware. GitHub.

https://github.com/ARM-software/arm-trusted-firmware


TZNIC Evaluation - Reliability
● Attacker capacity

○ Brute-force deleting the packet from a specific IP

○ Benchmark iPerf [3] cannot receive any packet under our interference

19

● Under the interference of our attacker

■ TZNIC receives 67% of the packets on average 

● 22% - 92%

[3] Dugan et al.. iPerf Benchmark. https://iperf.fr



TAKEAWAYS

20



Summary

21

1. We can support software in TrustZone secure world with reliable network

2. Secure-world driver can reliably reuse the normal-world driver’s interface

a. Secure world has higher privilege to inspect on-device registers

b. Secure world has higher privilege to read normal-world driver’s data

c. Secure world has higher privilege to get activated

3. TZNIC makes 0 modifications or requirements on the rich OS



22

Thanks &
Questions?

Shengye Wan

June 29, 2021



Backup Slides 

23



TZNIC Evaluation - Rich OS Overhead
● When TZNIC wakes up, rich OS will suffer 16.7% overhead

24

● The overall overhead can 

easily improved 

○ TZNIC does not wake up often

■ The wake-up frequency 

can be adjusted

○ To promise 95% of the rich OS 

performance:

■ TZNIC wakes 10ms among 

every 80ms



Future Works
1. Protecting network devices from Denial-of-Service attacks

○ Configuring the NIC as a secure-world hardware

2. Deploying multiple TZNIC in secure world

○ Solution-1: moving TZNIC into secure application layer

○ Solution-2: Using new ARM TrustZone feature

■ Achieve virtualization in the secure world

25



Background: Cross-World Context Switch

26

● SMC

○ ARM special instruction to enter the Secure Monitor (EL3) code

○ Core-i can only use SMC to switch the status of core-i 

● Interrupt

○ SW-interrupt is promised to route to secure world

■ Interrupt untrusted NW execution

■ One interrupt may arrive on

● One specific core-i (Private Peripheral Interrupt)

● Multiple cores (Shared Peripheral Interrupt, Software Generated Interrupts)

○ NW-interrupt can get handled in both worlds


