Remotely Controlling TrustZone Applications? A Study on Securely and Resiliently Receiving Remote Commands

Shengye Wan, Kun Sun, Ning Zhang, Yue Li

June 29, 2021

OUTLINE

• Introduction

- System Overview
- System Evaluation

• Takeaways

INTRODUCTION

Background: Mobile Device Management

- Mobile device management (MDM)
 - Enable corporate administrators to remotely perform essential functions
 - Supportability, security, and corporate functionality

Enroll Apple		Mobile dev	ice
devices in MDM	IBM	manageme	verizon
You can configure restrictions and other payloads for Apple TV.	Mobile Security Products Solution	Microsoft	
Learn about enrollment types >	-		Business / Products / Security & Protection V / Mobile Device & Endpoint Se
	Mobile device		Mobile Device
	management (MDM) solutions		Management (MDM) solutions

Security of MDM Agents

- MDM workflow
 - Administrator <-> Management Commands <-> MDM Agents (clients)
- MDM agents are security-sensitive
 - Rich OS cannot be trusted to hold MDM agents
 - 859 CVEs are reported in 2020 for Android [1]
 - Opportunities to enhance MDM agents' security

TRUSTZONE

 $[1]\ CVE\ Details:\ https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/year-2020/Google-Android.html$

Background: ARM TrustZone Technology

Motivation: Two Worlds Need to Share One NIC

- MDM agents require network service
 - Remote attestation, remote control, remote troubleshooting
- Secure world (SW) does not have an exclusive NIC
 - Commercial devices only equip one set of network devices
 - Limited hardware spaces on mobile
 - NW and SW need to share the NIC
- **Question:** With a shared Network Interface Card (NIC), how to provide a reliable network for ARM TrustZone secure world?

Background: NIC Workflow

SYSTEM OVERVIEW

How to Share One NIC Between Two Worlds?

- Option-1: sharing the single network driver in NW
 - Pros: providing good normal world performance
 - Cons: not reliable for the secure world

Packet Buffers (on **NW** DRAM)

Sharing One NIC: Option-2

- Option-2: sharing the single network driver in SW
 - Pros: reliable for SW
 - Cons: introducing large overhead
 - NW software cannot access packet buffers directly

Sharing One NIC: Option-3

- Option-3: depling to the inversion each world
 - Pros: reliable an performance
 None of these options works!
 W Driver Interface + Packet Buffers

NIC

- Cons: very difficult to sch ule tw ↓
 drivers
 - One NIC only connects to one driver's interface

NW Driver Interface + Packet Buffers

Our Solution: TZNIC

- Deploying a complete NW-driver and a slim SW-driver
 - Key idea: executing two drivers simultaneously on the multi-core platform

SW Slim Network Driver

• Multiplexing the NW-driver's interface

TZNIC Challenges

- 1. Filling the semantic gap to use NW-driver's interface reliably
 - SW-driver should not put any trust in the normal world
 - SW-driver should not require any collaboration from the normal world

- 2. Resisting interference from the normal world
 - Securely sharing the interface and buffers with NW-driver

Resolving Challenge-1: Filling Semantic Gap

- Locating NW driver's interface via the NIC registers
 - Registers indicate the ring buffer information
 - Registers are readable to the secure world
- Locating the packets via the NW driver's interface
 - Interface and buffers are saved in the NW memory
 - Secure world has the privilege to read/write
 - NW driver uses fixed-format interface to communicate with NIC
- Does not request any collaboration of the normal world

Resolving Challenge-2: Resisting NW interference

- Reading packets in parallel of NW-driver
 - SW-driver wakes itself periodically to receive the packets
 - One receiving buffer can be read by two drivers simultaneously

- Saving the secure-world packets to the secure memory
 - Each buffer should be independent and loss-tolerant (e.g., UDP)
 - Normal-world attacker cannot access

SYSTEM EVALUATION

TZNIC Implementation

- Implementing our prototype based on ARM-TF [2]
 - Marvell Yukon-II NIC & Marvell sky-2 driver (v 1.30)

- TZNIC's slim driver's size is 18.63% of the original driver
 - Full-fledged normal-world sky-2 driver: 5707 LOC
 - TZNIC slim secure-world driver: 1063 LOC

TZNIC Evaluation - Reliability

- Attacker capacity
 - Brute-force deleting the packet from a specific IP
 - Benchmark iPerf [3] cannot receive any packet under our interference
- Under the interference of our attacker
 - TZNIC receives 67% of the packets on average
 - 22% 92%

TAKEAWAYS

Summary

- 1. We can support software in TrustZone secure world with reliable network
- 2. Secure-world driver can reliably reuse the normal-world driver's interface
 - a. Secure world has higher privilege to inspect on-device registers
 - b. Secure world has higher privilege to read normal-world driver's data
 - c. Secure world has higher privilege to get activated
- 3. TZNIC makes 0 modifications or requirements on the rich OS

Thanks & Questions?

Shengye Wan

June 29, 2021

Backup Slides

TZNIC Evaluation - Rich OS Overhead

- When TZNIC wakes up, rich OS will suffer 16.7% overhead
- The overall overhead can easily improved
 - TZNIC does not wake up often
 - The wake-up frequency can be adjusted
 - To promise 95% of the rich OS performance:
 - TZNIC wakes 10ms among every 80ms

Future Works

- 1. Protecting network devices from Denial-of-Service attacks
 - \circ $\,$ Configuring the NIC as a secure-world hardware
- 2. Deploying multiple TZNIC in secure world
 - Solution-1: moving TZNIC into secure application layer
 - Solution-2: Using new ARM TrustZone feature
 - Achieve virtualization in the secure world

Background: Cross-World Context Switch

- SMC
 - ARM special instruction to enter the Secure Monitor (EL3) code
 - *Core-i* can only use SMC to switch the status of *core-i*
- Interrupt
 - SW-interrupt is promised to route to secure world
 - Interrupt untrusted NW execution
 - One interrupt may arrive on
 - One specific *core-i* (Private Peripheral Interrupt)
 - Multiple cores (Shared Peripheral Interrupt, Software Generated Interrupts)
 - NW-interrupt can get handled in both worlds