
SATIN: A Secure and Trustworthy Asynchronous
Introspection on Multi-Core ARM Processors

1

Shengye Wan, Jianhua Sun, Kun Sun, Ning Zhang, and Qi Li

June/26/2019

Outline

● Background

○ TrustZone and Asynchronous Introspection

● New Evasion Attack on Multi-core Platform

○ Against TrustZone-based asynchronous introspection

● Defense

○ Secure TrustZone-based asynchronous introspection

● Takeaways

2

ARM TrustZone

3

Normal world is untrusted!

Attackers may exist!

Inspect Normal World from Secure World

● TrustZone secure world has higher privilege

○ Accessing the system resources of the normal world such as

memory, CPU registers, and peripherals

4

Introspection Techniques

1. Synchronous Introspection

○ Hooking the security-sensitive locations

○ Prevention

2. Asynchronous Introspection

○ Repeatedly analyzing the system snapshot

○ Detection

5

Trustzone-Based Synchronous Introspection

6

Normal

World

Application

sys_exit

sys_fork

sys_read

sys_write

[1] Azab et al., “Hypervision across worlds: Real-time kernel protection from the arm trustzone secure world”

1. write_0

Secure World

Synchronous Introspection

2. Inspecting the write operation

e.g., TZ-RKP [1]

Normal

World

Kernel

sys_call_table

Synchronous Introspection Limitation

7

Normal

World

Application

Normal

World

Kernel

evil.sys_read

sys_write

sys_call_table

write_new

(unhooked)

Secure World

Synchronous Introspection

Any missed

operation

leads to be

compromised

write_0 .. write_n

Synchronous Introspection Limitation

8

● Hard to hook up all security-sensitive locations

○ Cannot ensure the completeness of introspection
■ Unknown bugs

■ Bypass the checkpoints

● If the synchronous introspection is bypassed

○ Persistent stealthy attacks

○ E.g., Bypassing real-time kernel protection [2]

[2] Project Zero, “Lifting the (hyper) visor: Bypassing samsung’s real-time kernel protection”

TrustZone-Based Asynchronous Introspection

● Detecting persistent stealthy attacks

● Two steps

1. Taking a snapshot of memory along with CPU state information

2. Analyzing snapshot to detect security policy violations

■ Checking the integrity of the invariant kernel code

■ Fine-grained security checking on dynamic kernel data structures

● Example: Samsung KNOX PKM (Periodic Kernel Measurement) [3]

9
[3] Samsung Electronics Co. Ltd., “White paper: An overview of the samsung knox platform”

TrustZone-Based Asynchronous Introspection

10

Normal

World

Application

Normal

World

Kernel

sys_exit

sys_fork

evil.sys_read

sys_write

sys_call_table

Secure World

Asynchronous

Introspection

sys_exit

sys_fork

evil.sys_read

sys_write

sys_call_table

Take the snapshot &

detect evil.sys_read

Asynchronous Introspection Suffers Evasion Attack

11

Snapshot

sys_exit

sys_fork

evil.sys_read

sys_write

sys_call_table

sys_exit

sys_fork

sys_read

sys_write

sys_call_table

recover

sys_exit

sys_fork

evil.sys_read

sys_write

sys_call_table

re-attack

Previous TEE-Based Asynchronous Introspection

● Single core asynchronous introspection in SMM [4,5]

○ No predictable pattern

○ When TEE is taking a snapshot, normal world is totally frozen

■ One core can only serve either TEE or normal world

■ Freezing is acceptable on single-core platform

○ Does not work on multi-core platforms

12

[4] Zhang et al., “Spectre: A dependable introspection framework via system management mode”

[5] Zhang et al., “Hypercheck: A hardware-assisted integrity monitor”

Challenges on Multi-Core Platform

● It is not practical to fully freeze the entire device

○ Needs to run both worlds’ tasks simultaneously

● A new race condition is introduced

○ The attacker in normal world is active during introspection

13

Multi-Core Race Condition

14

Introspection covers entire kernel, while malicious byte can be anywhere

(Ts_switch + Ts_scan) v.s. (Tns_delay + Tns_recover)

malicious bytes
CAPTURED!

malicious bytes
ESCAPED!

Attacking Conditions

15

1. Probing when does the introspection start

○ Secure world resources are invisible to the normal world

2. Evading fast

○ The malicious trace has to be cleaned before the snapshot being

taken by secure world

TZ-Evader Design

● Two components

1. Asynchronous introspection prober

■ Key idea: checking core availability

● Secure world’s core is not available to normal world

● Every core reports its availability on its own initiative

2. A recoverable attack

■ Hide & re-apply

16

Asynchronous Introspection Prober

● Assigning one thread to each core

● Reporting the latest time

● Comparing one core’s latest time with other cores’

17

Asynchronous Introspection Prober Example

18

core_id reported time

core_0 1.3

core_1 1.2

core_2 1.3

core_3 1.4

Asynchronous introspection is not working

● Threads cannot be controlled completely synchronized

● The time differences between any two threads have an upper limit

● We define the probing threshold Tns_delay = 1.4 - 1.2 = 0.2

Asynchronous Introspection Prober Example

tcore_0 > (tcore_1 + Tns_delay)

19

core_id reported time

core_0 2.1

core_1 1.2

core_2 2.1

core_3 2.3

Asynchronous introspection is working on core_1

core_1 is hold by secure world

TZ-Evader Evaluation

● ARM Juno r1 development board

○ 4-core A53 processor, 2-core A57 processor

○ Rich OS: OpenEmbedded LAMP OS with kernel version lsk-4.4-armlt

○ Introspection checks the integrity of static kernel: 11,916,240 bytes

● Attacker

○ Hijacking the the GETTID system call (8 bytes)

○ Escaping from all secure world asynchronous introspections

20

TZ-Evader Observation 1

● (Ts_switch + Ts_scan) v.s. (Tns_delay + Tns_recover)

● Probing one core’s availability

○ Tns_delay ≈ 0.5ms

● Probing five cores’ availabilities

○ Tns_delay ≈ 2ms

21

To maximum the attackers’ time cost, secure world

should not fix it CPU affinity

TZ-Evader Observation 2

● Worst cases for the attacker

○ Ts_switch : 3.6 us, Ts_ccan : 79.48 ms

○ Tns_delay : 2 ms, Tns_recover : 6.13 ms

○ At the moment attacker recovers its trace:

■ Secure world only inspects 10% of the kernel

22

TZ-Evader is fast enough to recover attacks happen

in 90% of the kernel without being detected.

SATIN: A Secure and Trustworthy Asynchronous Introspection

● Self activation

○ Use the secure timer

■ Always invoke secure world to handle the interrupt

■ Do not engage normal world to invoke the introspection

● Random activation

23

SATIN: A Secure and Trustworthy Asynchronous Introspection

● Releasing the CPU core before normal world realizes it

○ Dividing the task into small sub areas

○ The time for inspecting each sub area should be shorter than

■ Tns_delay + Tns_recover - Ts_switch

● Using all cores randomly

○ Increasing the difficulty of the normal world to conduct TZ-Evader

24

SAINT Performance

25

● Divide the normal world's kernel into 19 areas

○ Largest area: 876,616 bytes, smallest area: 431,360 bytes

● Inspecting entire kernel takes 152s in average

● TZ-Evader is 100% captured

● Performance downgradation (UnixBench)

○ 0.711% for single core task

○ 0.848% for 6 cores task

SAINT Overhead

26

Takeaways

27

1. We need TrustZone-based asynchronous introspection

2. It is challenging to inspect the normal world without freezing it

3. Core availability can expose the secure world running information

4. A secure introspection should mitigate all forms of evasion attacks

28

Thank you!

Q&A

