RusTEE: Developi

rustzZor

ng Me
i

A

)

mory-Safe ARM

cations

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, Xu He

.0 0.
WILLIAM Bai @) USA

& MARY

........ UniversityinSt.Louis

UN

n

December 10th, 2020

QUTLINE

INTRODUCTION

Mohile Devices Are Not Safe

e Mobile devices are facing many different threats

o 'Trojans, spyware, ransomware

e We need an unified security solution

o Mobile devices are mostly shipped with ARM-based chips

@ Arm
TRUSTZONE

ARM TrustZone Technology

Entire normal world is untrusted
It is isolated from secure components

Low
Privilege

\4
High
Privilege

Secure world is frusted

Normal World

Application Application

—_— e e e e == ===

S-ELO Secure World

Trusted Trusted
Application Application

S-EL1 Trusted OS

Secure Monitor

One TA Breaks Entire Samsung TrustZone

/* CA passes parameters to TA x/

uint32_t vl =
uint32_t v2 =

REE_Param[@].val;
REE_Param[1].val;

Attacker-controlled parameters

/* TA uses the values of CA uncarefully *x/

uint32_t src

vl + m;

uint32_t length = v2 + n;

/* TA conducts dangerous operation */

memcpy (dest,

src, length); Manipulated dangerous behavior

C-Style pseudo-code of a vulnerable trusted application,

CVE-2018-14491 [1]

[1] Quarkslab. 2019. “Breaking Samsung's ARM TrustZone”. BlackHat USA.

Mativation: Trusted Applications Are Vulnerable

e Issue-1: TAs are written with memory-corruption bugs

o Memory-unsafe languages: C & assembly code

o Good performance vs. memory-corruption vulnerabilities

e Issue-2: A vulnerable TA threatens entire secure world

o Widely exposed system-service APIs

o user mode -> kernel mode

e Issue-3: A vulnerable TA can get manipulated

o Cross-world communication

o Malicious Normal World application can exploit Secure World vulnerabilities

Security Issues of Trusted Applications

3. cross-world communication)
1. memory-corruption

l vulnerabilities
S-ELO 'Secure World

)

o g f Trusted
A 0 Application
Al A

Low ELO Normal World l

Privilege A
L I A
[Appllcatlon] [Appllcatlon] m

\4
High
Privilege

Security Issues of Trusted Applications

Low
Privilege

\4
High
Privilege

3. cross-world communication

1. memory-corruption

ELO Normal World l
A
. . v
Application | | Application m
EL1 Rich OS Rich OS
EL2 [Hypervisor]

"""""""""" VN

ELS S¢ ﬁ
‘ ®

l vulnerabilities
acure World

Trusted
Application

SYSTEM

OVERVIEW

Our Solution: RusTEE

e Providing a reliable trusted-application SDK

o Key idea: building trusted applications in the memory-safe language Rust

e Rust language [3]
o Reliability: promise the memory and thread safety
o Performance: run-time behavior similar to C

o Productivity: million crates (libraries)

[31 Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM SIGAda Ada Letters.

11

Resolving Issue-1: Integrating Rust

e Supporting standard Rust-safe operations

o Rust compiler can detect memory-corruption bugs for Rust-safe code
o Manually connecting the trusted OS’s standard library with Rust
m We provide supports for Aarch32 and Aarch64 trusted OS

e Trusted applications still require C-based libraries

o System services (e.g., cryptography) and cross-world communication

o Rust imports C libraries via Foreign Function Interface (unsafe bindings)
m Rust compiler skips checking on Rust-unsafe

m Introducing potential threats

12

Resolving Issue-Z: Binding Unsafe APIs

e Enforcing 6 principles for binding C-based libraries
o Adapting 4 principles of Rust-SGX [4]

m Bytes, ContiguousMemory, Sanitizable[T], Handle_

o Proposing 2 new principles for binding TrustZone-specific APIs
i. Enforcing the serialization of grouped APIs
e API-prepare -> APl-encrypt -> API-finalize
ii. Enforcing allocation & release for sensitive data structures

e Example: impl Drop for OperationHandle {}

[4] Wang et al. 2019. “Towards Memory Safe Enclave Programming with Rust-SGX”. CCS.

13

Resolving Issue-3: Securing Communication

® 4 involved data structures

o Context, Session, Command, Parameter

e 3 security enhancements

1. Management of all structures’ lifetimes
2. Management of Parameter’s mutability (R/W permission)
3. Enforcing the type-safety of Parameter

14

Resolving Security Issues

Low
Privilege

\4
High
Privilege

ELO

Normal World

[Application] [Application]

[Secure Monitor]

memory-safe

applications
ecure World

f

Trusted
pplicatio

ni

15

SYSTEM

EVALUATION

RusTEE Implementation

e Implementing our prototype based on OP-TEE OS [5]
o TAs can be developed with all functionalities of OP-TEE
o Providing normal-world SDK as the complementary component
e Providing 13 examples
o Cryptography (e.g., AES, HMAC), file storage, big-number calculation, etc.
o Re-implement all 6 examples of OP-TEE
e (pen-source project [6]

o More than 8000 Lines-of-Code

@)

[51 Linaro. . GitHub.
[6] Mesalock Linux. . GitHub.
17

https://github.com/sccommunity/rust-optee-trustzone-sdk
https://github.com/OP-TEE/optee_os
https://github.com/mesalock-linux/rust-optee-trustzone-sdk

RusTEE Evaluation

e RusTEE applications vs. OP-TEE applications

110 : : . . .
o Overhead = C TA performance
[Rust TA performance

o Min=0.27% 105}
o Max=3.08%

100+
o Average <1%

951

Normalized Overhead (%)

90 +

85/
AN \ x° % et

2
o
e

18

TAKEAWAYS

summary

L.

3.

4,

We need memory-safe TrustZone Trusted Applications
Rust can contribute on building reliable TAs
The Trusted OS should interact with TAs carefully

TAs should use the data from Normal World carefully

20

Thanks &
Questions?

Presenter: Shengye Wan
0&A: Mingshen Sun

December 10th, 2020

21

Mativation: Trusted Applications Are Vulnerable

e Trusted Applications (TAs) suffers security issues [2]

o Implementation Issues

m Bugs related to specific implementation details

o Architectural Issues

m Shared design flaws among different systems

[2] Cerdeira et al. 2020. “SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems”. S&P. ce

Mitigating Security Issues of Trusted Applications

e Previous mitigations
o Isolating the executions of trusted applications
m [solating in the normal world [2]
m [solating in the time-slice fashion [3]

o Limitation: introducing non-negligible performance overhead

e (Question: How to build memory-safe trusted applications?

[2] Brasser et al., “SANCTUARY: ARMing TrustZone with User-space Enclaves”
[3]1 Sun et al,, “TrustICE: Hardware-assisted isolated computing environments on mobile devices”

23

