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INTRODUCTION




Mohile Devices Are Not Safe

e Mobile devices are facing many different threats

o 'Trojans, spyware, ransomware

e We need an unified security solution

o Mobile devices are mostly shipped with ARM-based chips

@ Arm
TRUSTZONE




ARM TrustZone Technology

Entire normal world is untrusted
It is isolated from secure components
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One TA Breaks Entire Samsung TrustZone

/* CA passes parameters to TA x/

uint32_t vl =
uint32_t v2 =

REE_Param[@].val;
REE_Param[1].val;

Attacker-controlled parameters

/* TA uses the values of CA uncarefully *x/

uint32_t src

vl + m;

uint32_t length = v2 + n;

/* TA conducts dangerous operation */

memcpy (dest,

src, length); Manipulated dangerous behavior

C-Style pseudo-code of a vulnerable trusted application,

CVE-2018-14491 [1]

[1] Quarkslab. 2019. “Breaking Samsung's ARM TrustZone”. BlackHat USA.



Mativation: Trusted Applications Are Vulnerable

e Issue-1: TAs are written with memory-corruption bugs

o Memory-unsafe languages: C & assembly code

o Good performance vs. memory-corruption vulnerabilities

e Issue-2: A vulnerable TA threatens entire secure world

o Widely exposed system-service APIs

o user mode -> kernel mode

e Issue-3: A vulnerable TA can get manipulated

o Cross-world communication

o Malicious Normal World application can exploit Secure World vulnerabilities



Security Issues of Trusted Applications
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Security Issues of Trusted Applications
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Our Solution: RusTEE

e Providing a reliable trusted-application SDK

o Key idea: building trusted applications in the memory-safe language Rust

e Rust language [3]
o Reliability: promise the memory and thread safety
o Performance: run-time behavior similar to C

o Productivity: million crates (libraries)

[31 Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM SIGAda Ada Letters.
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Resolving Issue-1: Integrating Rust

e Supporting standard Rust-safe operations

o Rust compiler can detect memory-corruption bugs for Rust-safe code
o Manually connecting the trusted OS’s standard library with Rust
m  We provide supports for Aarch32 and Aarch64 trusted OS

e Trusted applications still require C-based libraries

o System services (e.g., cryptography) and cross-world communication

o Rust imports C libraries via Foreign Function Interface (unsafe bindings)
m  Rust compiler skips checking on Rust-unsafe

m Introducing potential threats
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Resolving Issue-Z: Binding Unsafe APIs

e Enforcing 6 principles for binding C-based libraries
o Adapting 4 principles of Rust-SGX [4]

m Bytes, ContiguousMemory, Sanitizable[ T], Handle_

o Proposing 2 new principles for binding TrustZone-specific APIs
i. Enforcing the serialization of grouped APIs
e API-prepare -> APl-encrypt -> API-finalize
ii. Enforcing allocation & release for sensitive data structures

e Example: impl Drop for OperationHandle {}

[4] Wang et al. 2019. “Towards Memory Safe Enclave Programming with Rust-SGX”. CCS.

13



Resolving Issue-3: Securing Communication

® 4 involved data structures

o Context, Session, Command, Parameter

e 3 security enhancements

1. Management of all structures’ lifetimes
2. Management of Parameter’s mutability (R/W permission)
3. Enforcing the type-safety of Parameter
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Resolving Security Issues
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RusTEE Implementation

e Implementing our prototype based on OP-TEE OS [5]
o TAs can be developed with all functionalities of OP-TEE
o Providing normal-world SDK as the complementary component
e Providing 13 examples
o Cryptography (e.g., AES, HMAC), file storage, big-number calculation, etc.
o Re-implement all 6 examples of OP-TEE
e (pen-source project [6]

o More than 8000 Lines-of-Code

@)

[51 Linaro. . GitHub.
[6] Mesalock Linux. . GitHub.
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https://github.com/sccommunity/rust-optee-trustzone-sdk
https://github.com/OP-TEE/optee_os
https://github.com/mesalock-linux/rust-optee-trustzone-sdk

RusTEE Evaluation

e RusTEE applications vs. OP-TEE applications
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TAKEAWAYS




summary

L.

3.

4,

We need memory-safe TrustZone Trusted Applications
Rust can contribute on building reliable TAs
The Trusted OS should interact with TAs carefully

TAs should use the data from Normal World carefully
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Presenter: Shengye Wan
0&A: Mingshen Sun

December 10th, 2020
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Mativation: Trusted Applications Are Vulnerable

e Trusted Applications (TAs) suffers security issues [2]

o Implementation Issues

m  Bugs related to specific implementation details

o Architectural Issues

m Shared design flaws among different systems

[2] Cerdeira et al. 2020. “SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems”. S&P. ce



Mitigating Security Issues of Trusted Applications

e Previous mitigations
o Isolating the executions of trusted applications
m [solating in the normal world [2]
m [solating in the time-slice fashion [3]

o Limitation: introducing non-negligible performance overhead

e (Question: How to build memory-safe trusted applications?

[2] Brasser et al., “SANCTUARY: ARMing TrustZone with User-space Enclaves”
[3]1 Sun et al,, “TrustICE: Hardware-assisted isolated computing environments on mobile devices”
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